Translation
Automatically translate transcribed content to multiple languages.
Overview
Translation capabilities help you:
- Translate call transcripts to different languages
- Support multilingual operations
- Break language barriers
- Create accessible records
- Enable global communication analysis
Supported Languages
The Translation API supports translation to all 100+ supported languages including:
- European: English, Spanish, French, German, Italian, Portuguese, Dutch, Swedish, Danish, Norwegian, Polish, Czech, Romanian, Hungarian, Greek
- Asian: Chinese (Simplified & Traditional), Japanese, Korean, Hindi, Thai, Vietnamese, Indonesian, Tagalog, Sinhala, Khmer
- Middle Eastern: Arabic, Hebrew, Persian, Turkish, Urdu
- Other: Russian, Hebrew, Turkish, and many more
How It Works
Translation is applied to:
- Transcribed text: The conversation text
- Call summaries: The auto-generated summary
- Extracted entities: Names, locations, organizations
- Keywords: Important terms and phrases
Getting Translated Content
Translate Transcript
curl -X POST "https://api.example.com/api/v1/transcripts/123456789/translate" \
-H "Authorization: Bearer YOUR_TOKEN" \
-H "Content-Type: application/json" \
-d '{
"targetLanguage": "SPANISH"
}'
Response
{
"originalLanguage": "ENGLISH",
"targetLanguage": "SPANISH",
"originalTranscription": "Hello, how can I help you today?",
"translatedTranscription": "Hola, ¿cómo puedo ayudarte hoy?",
"translatedSummary": "El cliente llamó para inquierir sobre el estado del pedido..."
}
Translation Quality
Translation quality depends on:
-
Source Transcription Quality
- Accurate transcription is essential
- Errors compound in translation
- Proper punctuation helps
-
Language Pair
- More common pairs: higher quality
- Rare language pairs: variable quality
- Domain-specific terms may need review
-
Context
- Provide industry context
- Use domain-specific models when available
- Review for accuracy
Integration Example
Python
import requests
class TranslationService:
def __init__(self, api_base, token):
self.api_base = api_base
self.headers = {"Authorization": f"Bearer {token}"}
def translate_transcript(self, transcript_id, target_language):
"""Translate transcript to target language"""
response = requests.post(
f"{self.api_base}/api/v1/transcripts/{transcript_id}/translate",
headers=self.headers,
json={"targetLanguage": target_language}
)
return response.json()
def translate_to_multiple_languages(self, transcript_id, languages):
"""Translate to multiple languages"""
translations = {}
for lang in languages:
translation = self.translate_transcript(transcript_id, lang)
translations[lang] = translation
return translations
def get_translated_content(self, transcript_id, target_language):
"""Get translated content organized by type"""
translation = self.translate_transcript(transcript_id, target_language)
return {
'language': target_language,
'transcript': translation.get('translatedTranscription'),
'summary': translation.get('translatedSummary'),
'confidence': translation.get('confidence', 0.9)
}
# Usage
translator = TranslationService("https://api.example.com", "your_token")
# Translate to Spanish
spanish = translator.translate_transcript(123456789, "SPANISH")
print("Spanish Translation:", spanish)
# Translate to multiple languages
languages = ["SPANISH", "FRENCH", "GERMAN", "CHINESE"]
translations = translator.translate_to_multiple_languages(123456789, languages)
for lang, translation in translations.items():
print(f"{lang}: {translation['translatedTranscription'][:100]}...")
Use Cases
1. Multilingual Support
- Support global customers
- Document conversations in multiple languages
- Enable team collaboration across regions
- Maintain record in preferred language
2. Compliance & Audit
- Create records in required languages
- Meet regulatory language requirements
- Generate multilingual transcripts
- Support audits in multiple languages
3. Training & Development
- Share call examples across language regions
- Create multilingual training materials
- Improve training content accessibility
- Enable global best practice sharing
4. Customer Service
- Provide transcripts in customer's language
- Support multilingual quality assurance
- Train multilingual agents
- Maintain language-specific standards
5. Business Intelligence
- Analyze calls across language regions
- Identify global trends
- Compare metrics across languages
- Generate multilingual reports
Translation Confidence
Each translation includes a confidence score:
{
"translatedText": "...",
"confidence": 0.94,
"confidenceLevel": "High"
}
Confidence Levels:
- 0.9+: Very High - Use as-is
- 0.75-0.89: High - Suitable with review
- 0.5-0.74: Medium - Review recommended
- <0.5: Low - Manual review required
Professional Human Review
For important documents:
-
Legal Compliance
- Use certified translators for legal matters
- Maintain verified translations
- Get translation certification if required
-
Quality Assurance
- Always have humans review
- Verify terminology accuracy
- Check cultural appropriateness
-
Document Control
- Version translations
- Track revisions
- Maintain audit trail
Domain-Specific Translation
Medical/Healthcare
def translate_medical_transcript(transcript_id, api_token):
"""Translate medical transcript with medical terminology"""
translator = TranslationService("https://api.example.com", api_token)
# Use medical domain model if available
translation = translator.translate_transcript(
transcript_id,
target_language="SPANISH",
domain="MEDICAL"
)
return translation
Legal
def translate_legal_document(transcript_id, api_token):
"""Translate legal document with legal terminology"""
translator = TranslationService("https://api.example.com", api_token)
# Use legal domain model
translation = translator.translate_transcript(
transcript_id,
target_language="SPANISH",
domain="LEGAL"
)
# Mark for human review
return {
'translation': translation,
'requires_human_review': True,
'suggested_reviewer': 'Legal Team'
}
Workflow Integration
Multilingual QA Process
def multilingual_qa_workflow(transcript_id, api_token):
"""Quality assurance in multiple languages"""
translator = TranslationService("https://api.example.com", api_token)
# Get original and translations
languages = ["ENGLISH", "SPANISH", "FRENCH", "GERMAN"]
results = {}
for lang in languages:
if lang == "ENGLISH":
# Get original
response = requests.get(
f"https://api.example.com/api/v1/transcripts/{transcript_id}/status",
headers={"Authorization": f"Bearer {api_token}"}
)
results[lang] = response.json()
else:
# Get translation
results[lang] = translator.translate_transcript(transcript_id, lang)
# QA check
qa_results = {
'transcript_id': transcript_id,
'translations': results,
'qa_status': 'complete'
}
return qa_results
Performance Considerations
Translation Time
- Single language: 5-30 seconds
- Multiple languages: Processed sequentially
- Large transcripts: May take longer
- Cache translations when possible
Cost Implications
- Each translation incurs a charge
- Batch translations more efficient
- Multi-language processing available
- Enterprise plans may include unlimited
Best Practices
1. Quality Assurance
- Always review AI translations
- Verify terminology accuracy
- Check cultural appropriateness
- Use human translators for critical content
2. Domain Expertise
- Use domain-specific models when available
- Provide context for specialized terms
- Maintain terminology glossaries
- Train translators on domain knowledge
3. Workflow Integration
- Automate where appropriate
- Flag for manual review
- Track translation accuracy
- Measure satisfaction
4. Compliance
- Ensure translation meets requirements
- Maintain audit trails
- Get necessary certifications
- Document translation process
Troubleshooting
Low Confidence Score
- Transcription may be unclear
- Language pair may be less common
- Specialized terminology present
- Request human review
Inaccurate Translation
- Domain-specific terms may be mistranslated
- Context dependent meanings
- Idiomatic expressions
- Request specialized translator
Missing Translation
- Language may not be fully supported
- Requires custom model
- Contact support for options
Next Steps
- Sentiment Analysis - Analyze emotions
- Topic Detection - Identify topics
- Named Entity Recognition - Extract entities
- Summarization - Generate summaries